skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Estep, Sam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Visual thinking with diagrams is a crucial skill for learning and problem-solving in STEM subjects. To improve in this area, students need a variety of visual problems for deliberate practice. However, in our interviews, educators shared that they struggle to create these practice exercises because of limitations of existing tools. We introduce Edgeworth, a tool designed to help educators easily create visual problems. Edgeworth works in two main ways: firstly, it takes a single diagram from the user and systematically alters it to produce many variations, which the educator can then choose from to create multiple problems. Secondly, it automates the layout of diagrams, ensuring consistent high quality without the need for manual adjustments. To assess Edgeworth, we carried out case studies, a technical evaluation, and expert walkthrough demonstrations. We show that Edgeworth can create problems in three domains: geometry, chemistry, and discrete math. These problems were authored in just 15 lines of Edgeworth code on average. Edgeworth generated usable answer options within the first 10 diagram variations in 87% of authored problems. Finally, educators gave positive feedback on Edgeworth's utility and the real-world applicability of its outputs. 
    more » « less
  2. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    Reverse-mode automatic differentiation (autodiff) has been popularized by deep learning, but its ability to compute gradients is also valuable for interactive use cases such as bidirectional computer-aided design, embedded physics simulations, visualizing causal inference, and more. Unfortunately, the web is ill-served by existing autodiff frameworks, which use autodiff strategies that perform poorly on dynamic scalar programs, and pull in heavy dependencies that would result in unacceptable webpage sizes. This work introduces Rose, a lightweight autodiff framework for the web using a new hybrid approach to reverse-mode autodiff, blending conventional tracing and transformation techniques in a way that uses the host language for metaprogramming while also allowing the programmer to explicitly define reusable functions that comprise a larger differentiable computation. We demonstrate the value of the Rose design by porting two differentiable physics simulations, and evaluate its performance on an optimization-based diagramming application, showing Rose outperforming the state-of-the-art in web-based autodiff by multiple orders of magnitude. 
    more » « less
  3. Static analysis tools typically address the problem of excessive false positives by requiring programmers to explicitly annotate their code. However, when faced with incomplete annotations, many analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs, we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual null-pointer analysis for a core imperative language, we build a prototype using the Infer static analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in which the gradualization approach used to derive the gradual analysis from its static counterpart can be extended to support more domains. This work thus provides a basis for future analysis tools that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the number of reported false positives. 
    more » « less
  4. Møller, Anders; Sridharan, Manu (Ed.)
    Static analysis tools typically address the problem of excessive false positives by requiring programmers to explicitly annotate their code. However, when faced with incomplete annotations, many analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs, we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual null-pointer analysis for a core imperative language, we build a prototype using the Infer static analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in which the gradualization approach used to derive the gradual analysis from its static counterpart can be extended to support more domains. This work thus provides a basis for future analysis tools that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the number of reported false positives. 
    more » « less